3,5–二硝基水杨酸法测定金钱草多糖的研究

林志銮, 刘俊劭
(武夷学院 环境与建筑工程系 福建省高校绿色化工技术重点实验室,福建 武夷山 354300)

摘要: 用溶剂法对金钱草多糖进行提取分离, 研究并确定了用3,5–二硝基水杨酸(DNS)比色法
测定金钱草多糖含量的方法, 测定条件为: DNS最佳用量为2.0mL, 最佳显色时间为5.0 min, 最
优的温度为沸水加热, 对金钱草多糖样品平行测定6次, 相对标准偏差(RSD)为3.98%. 样品加
标回收率在92.52%~104.49%, 检出限为0.022 mg/mL.

关键词: 金钱草; 3,5–二硝基水杨酸; 多糖

中图分类号: O629.12 文献标志码: A 文章编号: 1672-8513(2011)02-0089-03

Determination of the Factors Affecting the Content of Polysaccharide in Lysimachia christinae Hance by 3,5–Dinitrosalicylic Acid Colorimeter

LIN Zhi-luan, LIU Jun-shao
(Key Laboratory for Green Chemical in Chemical Engineering and Technology Specialty of Fujian Higher Education, Department of Civil Engineering and Architecture, Wuyi University, Wuyishan 354300, China)

Abstract; The solvent extraction separation of Lysimachia christinae Hance’s polysaccharide was studied. The content of polysaccharide was determined by 3,5–dinitrosalicylic acid (DNS) colorimeter. The DNS optimum dosage was 2.0 mg/mL, the best time for colorimeter was 5.0 min, and the optimal temperature was 100℃. The six–time parallel determination proved to be RSD = 3.98%, the recovery rate was between 92.52%—104.49%, and the detection limit of glucose was 0.022 mg/mL.

Key words: Lysimachia christinae Hance; 3,5–dinitrosalicylic acid; polysaccharide

金钱草为报春花科植物过路黄(Lysimachia christinae Hance)的新鲜或干燥全草, 又名大金钱草、对座草、路边黄、遍地黄等, 被中国药典2000年版所收载[1-2]. 近年来有关金钱草的化学成分已有报道, 主要含有酚类、黄酮类、甙类、鞣质、挥发油等[3-4], 但目前针对金钱草多糖的分析研究还不多见.

1 材料与方法

1.1 主要仪器与试剂

紫外可见分光光度计 UV–2550 (日本岛津), 真空干燥箱 (上海精宏), 自动纯水蒸馏器 (上海嘉鹏科技有限公司), 微型植物粉碎机 (天津市泰斯特仪器厂).

DNS 显色试剂的配制: 准确移取无水的3,5–二硝基水杨酸6.5 g, 氢氧化钠3.2 g 溶解于40 mL
蒸馏水中, 加入15 mL 丙三醇溶解定容至1 000 mL,
贮存于棕色试剂瓶中[12]. 葡萄糖标准溶液的配制: 精确称取在 105℃ 烘干至恒重的葡萄糖 0.1000 g, 定容到 50 mL, 即为 2.0 mg/mL 的葡萄糖标准溶液, 其余药品及试剂均为分析纯。金钱草来自武夷山地区, 经武夷学院绿色化工技术重点实验室贾剑晖实验师鉴定, 自然晒干后, 烘至恒重备用。

1.2 实验方法
1.2.1 金钱草多糖的提取
金钱草全株→粉碎→石油醚回流 2 h→乙醇回流 2 h→蒸馏水煎 1.5 h, 重复 3 次合并水煎液浓缩到 50 mL→乙醇沉淀→sevage 法脱蛋白→乙醇沉淀→减压过滤→丙酮溶剂洗涤→干燥→金钱草粗多糖。

1.2.2 多糖测定的方法
用 3,5-二硝基水杨酸法测定金钱草多糖的含量。准确移取葡萄糖溶液标准 0.5 mL 于 25 mL 比色管中, 补充 0.5 mL 蒸馏水, 再准确加入 2.0 mL 的 DNS 溶液, 沸水浴 5 min, 快速冷却至室温后, 定容到 25 mL。用紫外可见分光光度计在 530 nm 测定。结果与讨论
2.1 影响因素的研究
2.1.1 最大吸收波长的确定
空白溶液调零后, 对上述葡萄糖、总糖样品进行 200 ~ 800 nm 扫描, 经比较分析结果后, 取干扰较少、测定稳定且灵敏度较高的 530 nm 作为测定波长。

2.1.2 DNS 用量的确定
准确移取葡萄糖标准溶液 0.5 mL 于 25 mL 比色管中, 分别补水 0.5 mL 蒸馏水, 再准确加入 1.2, 1.6, 2.0, 2.4, 2.8 mL 的 DNS 溶液, 沸水浴 5 min, 快速冷却至室温后, 定容到 25 mL, 定容。由图 1 可得出, DNS 用量为 2.0 mL 时吸光度达到最大, 为此选择 2.0 mL 为最佳 DNS 用量。

2.1.3 DNS 显色时间的确定
准确移取葡萄糖标准溶液 0.5 mL 于 25 mL 比色管中, 分别补水 0.5 mL 蒸馏水, 再准确加入 2.0 mL 的 DNS 溶液, 沸水浴 1, 2, 3, 4, 5, 6, 7, 8 min, 快速冷却至室温后, 定容到 25 mL, 测定。从图 2 可知, 显色时间小于 3 min 时, 反应不完全, 3 ~ 5 min 内吸光度缓慢上升, 5 min 后, 吸光度基本无变化, 为此, 我们选用沸水浴 5 min 作为显色时间。

2.1.4 比色反应温度对显色的影响
按照 1.2.2 方法制备标准溶液, 分别加热至 60, 70, 80, 90, 100℃, 快速冷却至室温后, 定容到 25 mL 后测定。从图 3 中可以看出, 吸光度随着温度的升高而升高, 90℃ 以后吸光度增加的趋势减小, 为此选择沸水浴为比色温度。

2.1.5 工作曲线的确定
准确移取葡萄糖标准溶液 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 mL 于 25 mL 比色管中, 分别补水 1.0, 0.8, 0.6, 0.4, 0.2, 0.0 mL 蒸馏水, 再准确加入 2.0 mL 的 DNS 溶液, 沸水浴 5 min, 快速冷却至室温后, 定容到 25 mL, 测定。工作曲线为: $Y = 2.1677X - 0.0008$, $r = 0.9969$, 结果表明该方法具有良好线性关系。
葡萄糖标准溶液按照1.2.2方法测定，样品加标回收率(见表1)在92.52%~104.49%之间。

1.2.7方法检出限的确定
对0.2、0.4、0.6 mg/mL葡萄糖标准溶液分别进行6次重复测定(结果见表2)，求出每个浓度的标准偏差S_1、S_2、S_3，并对3个标准偏差和浓度进行线性回归分析，得回归方程。当$x=0$时，求得$S_0=0.0074$，3倍的S_0即为该方法的最小检出限。

2.2样品测定
精确称取提取的金钱草多糖样品0.0500g，加水定容到10mL容量瓶中，准确移取该试液0.5mL于25mL 比色管中，按表2的方法制备样品，平行测定3次(结果见表3)。

3结束语
建立了用3,5-二硝基水杨酸(DNS)比色法测定金钱草多糖的方法，RSD为3.98%，样品加标回收率为95.52%~104.49%。该方法显色稳定、操作简单、低毒和安全性好等特点。本实验方法简便易行，实用有效，快捷，具有投入费用低，操作简单，容易普及、毒性低，腐蚀性小，安全性好等特点。

参考文献